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is obviously the result of libration motions of the body in region 3’s X ir!, i f C SO (3). 
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The permanent rotation of a heavy solid body about its principal axis of inertia 

with a fixed point is considered. Stability is investigated with the use of the the- 

orem on the stability of Hamiltoni~ systems with two degrees of freedom in the 
general elliptic case. It is shown that in the absence of certain resonance rela- 

tionship in the region of necessary stability conditions, which does not coincide 

with the region of known sufficient conditions, the first approximation indicates 
the existence of stability, except possibly, in the case when the parameters ofthe 
problem lie on some specific manifolds of the parameter space. Subregions that 
are free of such exceptional manifolds are indicated in each region of necessary 
stability conditions. 

Necessary stability conditions for permanent rotation about principal axes of 
inertia of a solid body were investigated by Grammel [3]. Sufficient conditions 
that matched necessary conditions were obtained by Chetaev in the case of La- 
grange integrab~ity [4]. and by Rumiantsev in that of Kowalewska integrability 
[S]. Permanent rotation of a body with arbitrary mass d~ribution about its prin- 
cipal axis of inertia was considered in [6 - 81, where sufficient stability condi- 
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tions were established by Chetaev’s method and on the basis of the Routh theo- 

rem. Bifurcation of permanent rotations and changes of stability were investi- 
gated in [Q]. 

1, We introduce the orthogonal system of coordinates Oxyz, with the Oz -axis coin- 

ciding with the direction of the gravity force mg acting on the body,and also the system 

of coordinates OXYZ whose axes lie along the principal axes of inertia of the body 
with respect to the fixed point 0. The position of the moving system of coordinates re- 

lative to the fixed system Oxyz is specified by the three angles I/J,, a and 8 defining 

three successive rotations. Angle ‘II, defines the rotation about the Oz-axis, angle 01 
defines the rotation about the new position of the 0~ -axis, and angle p the rotation 

about the 0 y -axis in its new position. 

The motion of the solid body will be defined by the variables $, a and g and their 

conjugate canonical momenta P+, P, and Pp. 
The Hamiltonian H expressed in terms of canonical variables is of the form 

Hz+ 
[ xA-dp .cosacosp+Ppsincrsin~-- P+sinp)2+ (1.1) 

$p”R + &dp .cosasin?-- Ppsinacosp+ P,cosp)2] - 

mg(-q)cosasinp +-Yosina+ zocosacos~) 

PJ, = - Ap cos a sin p + Bq sin a + Cr cos a cos fi 

P, = Ap cos fi + Cr sin fl, Pp = Bq 

where x0, go, z. are the coordinates of the body center of mass in the system of coor- 

dinates OXYZ, p, q, r are projections of the vector of the body instantaneous angu- 
lar velocity, defined in the usual manner by $, a and p and their derivatives with re- 

spect to time, and A, B and c are the principal momenta of inertia of the body rela- 
tive to the fixed point. 

In what follows we consider Hamilton equations for the variables a, b, P, and P, 
with function H (1.1) in which the momentum corresponding to the cyclic coordinate, 

PJ, = 1 = const. 

2, Let us investigate the stability of permanent rotation about the principal axis of 

inertia OZ (x0 = y, = 0). 
The unperturbed motion is defined by the following values of variables: 

a0 = PO = a,’ = fi@. = 0, $0’ = con& 

PO = 90 = 0, Fr, = $o’, P,, = Pp, = 0, PGo = Cr, = 1 

III the case of perturbed motion we consider the quantities a, fi, P, and Pp to be 

small and 1 to be a fixed number. Then, omitting the additive constant, we represent 
the Hamiltonian H (1.1) in the form of a series in terms of uniform even powers of the 
variables a, p, Ph and ps m 

H = s H,, 

where the first two terms am of the form 

(2.1) 

H, =+ 
I: ( 
$ p, c2. 2, 
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H4 = + [+$ (P:$” - zW,P + f 12p - 2P,P&3 + rP,;w - (2.3) 

6 (a4 + 6z2,32 + [3”) 

a, = 12(C--B) +a 
c2 7 a2 = l’(C--A) +a 

c2 1 a = mgzo 

If function H2 is positive definite, we have stability, hence it is interesting to examine 

the case when B, is an alternative function. 

We base the investigation of stability with respect to a, /3, P, and Pp of the zero 

solution of Hamilton equations with function H defined by (2. 1) - (2.3) on the theorem 
about the stability of Hamiltonian systems with two degrees of freedom [l, 21. The for- 

mulation of the theorem presupposes that function H has been reduced up to and inclu- 
ding its fourth order terms by real canonical transformation to the normal form 

H = -& i OjFj + t i UjkFjFk + i H, 

3=1 j,k=l m=:, 

rj = ET + T$ , U;, = & 

(2.4) 

I 

where oj and ajk are real constants. The equilibrium position is, according to Liapunov, 

stable, if the inequality 
D 5 aIl’w22 - 2a12’qo2 + as2’w2 # 0 (2.5) 

is satisfied. 

8, We pass to the determination of the invariants 01 and ajk’ (I, k = 1, 2) of the 
normal form (2.4). below besides (2.4) we shall consider for H the following normal 
form : 

H = i Xjujvj + i tij,+j~+k~k + i H, (3.1) 
i=l j, k=l w&=5 

Xj = IOj, 
, 

ajk = - ajk 

which is derived from (2.4) by the canonical transformation 

Ej = +Z (Uj + IVj), qj = & (Uj - IVj) 

First,we reduce the second order terms H, of function H to the normal form. This 

can be done by the linear simplicial canonical transformation that is constructed with 
the use of eigenvectors of matrix G which appears in equations and variations 

dPldt = GP, P = {a, f3, P,, Pp} (3.2) 

G= 

A - c 1 
0 

AC 
’ A 0 

1 1 
_- C 0 0 u 

1 

0 0 T 

A-c C-A 0 ~ 
AC 

12-a 
AC 

1 0 
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Let us consider the case when the roots xl, -x1, x2 and -x2 of the characteristic 
equation of system (3.2) 

x4 + 2&x2 + s, = 0 (3.3) 

&+(1+ (‘4-~~-“‘);+z!!_&&], s2=s 

are purely imaginary and there are no equal ones among them. For this it is necessary 
and sufficient for the following concurrent inequalities 

to be satisfied. 

s, > 0, s2 > 0, s, = S12 - 82 > 0 

Let A, (x) (m = 1, 2, 3, 4) be the cofactor taken with the opposite sign of the 
m-th element of the last row of matrix G - xE (E is a unit matrix) 

A,(x) = -&(A+&-), &(x)=$(x2++) (3.5) 

a,(~)=~(,~+~.,), Ad=+‘++++) 

The sought transformation is then 

P = AQ, Q = h1 52, Yl, Y2) 
(3.6) 

A1 (xl) A1 (x4 A1 (XI) .& (%a) 
- - 

ZBl I62 
-- 

81 
-- 

sa 

AZ (~1) Aa (a) Az(xl) An(a) 

A = z61 
182 61 62 

A3(x1) A3(x2) As (XI) As(542) -- -- 
It-31 182 81 Ba 

A4(x1) A4(x2) A4 (~1) Aa -~_~_- 
L 161 162 81 82 

with 
16j2 = 2 (AI (Xi> As (xj) - 84 (Xi> A2 (xJ)), i=i, 2 (3.7) 

Transformation (3.6) reduces matrix G to the diagonal form and the quadratic terms 

of function H to the normal form. This transformation is canonical and universal, since 
by virtue of (3.6) the expression 

P& + P& - Y&r - Y2&2 

is a total differential. This can be readily verified by taking into account that the con- 

stants A,,, (Xj) (3.5) satisfy the relationships 

Ar (xl> A, (~2) - A2 (~2) A4 (XI) = 0 

A1 (~2) As (XI) - A2 (~1) A4 (~2) = 0 

The transformation (3.6) is complex-valued, as it must be.if together with the trans- 
formation 

Ei = + (zj + lyj), qj = &(Xj - lyj) (3.6) 

which reduces Hamiltonian H to the real form (2.4), it is to yield a real-valued canon- 
ical transformation. Since the constants AI and A4 (Xj) are purely imaginary,while 

A2 (Xj> ad AS (Xi) are real, the transformation a, p, P,, Pp -+- &, E2, ql, Q(3.6), 
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(3.8) is real when the constants 6, and 6% are real. 
Formula (3.7) for 16j” can be represented as follows: 

16j’L Z IOj 161 + \--1)3021 (3.9) 

where the real numbers oi and o, are independent of j. It is always possible to obtain 
on the basis of (3.9) ajz ,> 0 by the selection of signs of Oj = --IX, . Hence the 

real valuedness of transformation (3,6), (3.8) determines whether the frequencies O/ in 

the normal form (2.4) are of the same or different sign. The interesting case when 
wlop < 0 is characterized by that the signature of the quadratic form of H, is zero 

a, < 0, a2 -=C 0 (3.10) 

When 6,& # 0, the transformation (3.6) is nonsingular, which yields the condition 

(3.11) 

Since by assumption inequalities (3.4) are satisfied, hence qoza,S3 # 0. The sti- 
pulation that condition (3.11) must be satisfied makes it necessary to exclude from our 
considerations the case of disk A + B - C == 0. However in that case 

12 
% 

z__L” Cl 
c2 :I ' 

xz2 Y - - - .A 
Cz B 

which means that a, > C, a2 > 0 and function JIz is positively determined. 

Grammel [3] had carried out a similar analysis of necessary conditions of stability 

(3.4) on the basis of which it is possible to separate in the first approximation the follow- 

ing stability regions that satisfy inequalities (3. 10) : 

z,,> 0, C<B$ A, I;> 1, (3.12) 

z,, < 0, C > A > B, R > 0, 1, < I< 1, (3.13) 

z,, < 0, A > C > B, K > 0, 1, < 1 i 1, (3.14) 

z,<O, C<B<AA, L>l, (3.15) 

where 
R = C" + B" + 3AB - 2C (A + B) 

122 = a0 1 2 _ UB-AC-BBC+2 jf:lB(2A-CC) (2Li3a 
B-_C’ 3 C--4-B 

4, To reduce the fourth power terms of function H in (2.3) we use the Birkhoff trans- 

formation [lo], and introduce the canonical variables tij and Vj (i = 1, 2) by formulas 
2 

i3K ak’ 

Ui-%-’ 
!h=azj> K = 2 vjxj + K4 

j=l 
(4.9 

where K, is a homogeneous fourth power polynomial of the variables Uj and Xi- 

In the absence of resonance of the form 
noi + mw, = 0 (4.2) 

where n and rn are integers that satisfy the equality 1 n 1 _t 1 m 1 == 4, the constant 
coefficients of polynomial K4 may be chosen so that in the new variables Uj and Uj all 
terms which do not appear in the normal form can be excluded from function ffa and, 
consequently, the Hamiltonian H will be of the form (3.1). 



Stability of pamanent rotath of a heavy solid body 375 

Below we assume that equality (4.2) does not apply, and consider the general (nonre- 
sonance) case-. 

Applying transformations (3.6) and (4.1) to function H,, for the invariants a,i, 02s 
and cri2 of normal form, we obtain the following formulas: 

oij = YY, (Xj) 6je4, i=i,2 (4.3) 

cl 1.2 = (YB (x1, %) + YFZ (% Xl) + ;‘I’3 (Xl) yv, (%)) ~I%+ 

‘r,(z) = y A,(c~)[A~(z)(3A~~(z)+ Z2A12(x)+ Z2A22(2)- 

4ZA&)A&)- 2ZA1@) Aa( + AI(~)(~A&) A,@:) - 

W~)~,(~))l - +- A12(~)(3A42(x) + 2Z2A12(z) - 

5ZA,(a)A,(s)) $- +(A12(z)- A2"(x))" 

Y,(z, y) = G [A22(y)(A,2(x)+ Z2A,2(s) + Z2A12@)) + 

AI(x) AZ(y) @s(y) Ao (z) - &(s) A,(Y) - ~~Az(Y) A&))+ 

2A.2 (z) A2 (Y) As (Y) (A, (4 - 2lA2 (41 - 
AI (4 

- PAI (Y) (A4 (2) A4 (Y) + Z2Al (4 Al(Y)) 4 

~,~)~~(Y)(~~(Y)--~ZWI 

Y3 (x) = AI2 (x) - A22 (a$ 

The analysis of inequality (2.5) in its general form is difficult, it is, however, possible 
to show that in the regions (3.12) - (3.15) D is an analytic function of I which does 
not identically vanish, and that in each of these four regions exists a subregion in which 
D # 0 ( ‘). Note that the case of A = B investigated in [4] may be excluded from 

our analysis. 

6, Let us, first, consider regions (3.12) and (3.15) and examine the quantity D as a 
function of parameter l.r = C/Z in some ring p1 < 1 p 1 < pa in the complex plane 

p,, where cl2 > pi > 0 and pi can be arbitrarily small. We shall show that in that 

ring D is an analytic function of p and determine the principal part of expansion of 

this function in a Laurent series in powers of parameter CL. The roots xi2 and xs2 of the 

secular equation (3.3) can be represented in the form of series in powers of parameter p2 

xi2 = -++X&“), xa2= - (A-$g-c~ +x2@") (5.1) 

whem x1(p2) and X2 (CL21 are the Taylor parts of related expansions. The value /Js2 = 
Cs/Esa, which is the root of equation Ss = 0, corresponds to the singular point of func- 
tions xi2 and x22 closest to l.r = 0 , hence series x1 ( p2) and xa (pz) converge in the 
circle 

O<IPl< IPSI (5.2) 

For Am (xl) (m = 1, 2, 3, 4; j = 1, 2) in(3.5)we have 

+) It is shown in the recently published paper [ll] that D f 0. 



where X&G)(li:=2,3,4;j= 1,23 are series in positive integral powers of para- 
meter f.k2. The expansions of functions x kj (~2) converge in zero in the circle (5.2). 
Representing 6r2 and 6s2 (3, I) by Laurent series in the ring pr < 1 ~1 I( p3, we ob- 
tain expansions in which we separate the first terms 

(5.4) 

where functions Xs (EL.‘) and X4 @‘) are of the SZUIX form as functious Xkj (ps), and 
Xs (0) = x4 (0) = 0. 

Using formulas (5. I), (5.3), (5.4). (4.3) and f 2.5), we represent D by a Laurent series 
in powers of parameter E-12 

which converges in the ring pr < / p ) < p* with !A* = min (Cit Es j, j p.s 1) I 
and where 2 Qr*} is the Taylor part of the expansion. As a function of parameter .I = 
C/p, series (5.5) is convergent for all finite I lying outside the circle 1 2 / = 1 2, 1. 
In the case of (3.12) all roots of equation (in I> &%,s = 0 which satisfies ~e~a~~ty 
(3, II) ~d,c~~e~~y* all singular points of thk finite plane for function ff lie either 
on the imaginary axis, or on the real axis to the left of the singular point I, > 0, Hence 
in that case the expansion of function x (p) can be analytically continued along thereal 
axis of the complex plane I up to I .-- 1,. In the case of (3,X5) all singular points of 
function D similarly lie either along the imaginary axis or on the real axis to the left 
of point 1, > 0 and, consequently, the series x ( p) can be analytically extended along 
the real. axis up to point I,. 

Thus the quantity D is an analytic function for all finite values of Z > 0 admissible 
in the case of (3.22) and (3,X5). In the considered cases A > B > C;, hence for fairly 
great I the quantity I3 is nonzero. 

8 * Let us consider regions (3.13) and (3.14) on the ~mption that B + C. 
Note that for &’ = C # A, E, :-’ -t co, and we have the case considered in Sect, S * 
We shall show that in the Mewal 2, < t < I, the quantity D is an analytic funct,ion 
of Z and that in a reasonably smali neighborhood of l,, D + 0. We introduce the 
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small parameter h ‘> 0 and assume that 

12 = 1,s - &q? (6.11 

then in the circle 1 h2 1 < (t,2 - 
tive integral powers of As with 

&‘)/c’ we have for xr2 and ~ss expansions in posi- 

wi”-z&s - 
I 

(C-B)fA-BB) 
R -!- (Pi Q+S)] t 5s = - $; -I- ‘g, W) QL21 

w&m the series cpi (As) are such that ‘~1 (0) = 9s (0) = 0. Using (3.5) and (6.1). 

where fur&Ions cps (As) and f~& fA2) are of the same kind as functions q)j (A21 (j = 1 9 
2). Now, taking into consideration formulas (2,5), (4.3) and (6. I) - (6.41, for function 
B in the ring 

h, < 1 3.” 1 < (122 - E,2)lC2 

where X, > 0 4s an arbitrarily smaI1 number, we have the Laurent series in powers of 
parameter h* 

D= 31a* (3C - 4B) (B - A) 
lt3ABtYh~ + Q, P2) (6.5) 

where q (&s) is the Taylor part of the expansion, When the condition A > 31 and 
I: > B is satisfied, the quantity D in (6.5) can vanish at smaIl 3\, only for SC - 
4B = 0 , and it is then possible to show that the first term of series (6.5) is 

which for d > B is nonzero. 

7, In the considered regions (3.12) - (3.15) the quantity D is an analytic function 
of L and for l! > 1, D -+ 0 hence only a finite number of values of 2 exists for every 
fixed set of constants A, B, C and z. for which D = 0. 

Let us formulate the obtained result. 
The ore m . If the frequencies o1 and os are different and have no fourth order re- 

sonances, the necessary stability conditions in the first approximati~ (2.61 for permanent 
rotation of a heavy solid body about its principal axis of inertia are also the sufficient 
conditions, perhaps with the exception of those values of parameters A, 23, C, z. and 
I for which D (2.5) vanishes. In regions (3.12) - (3.15) the equation D = 0 in I has 
only a finite number of roots, and each of these regions contains a ~b~gionwbe~~-#~. 

Stability of permanent rotation with respect to the variables cs, & Y, and Pp for 
~9 # 0 has been proved on the assumption that the constant I (or qO) is not subjected 
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to perturbations. If I is imparted a fairly small increment Al, the total perturbed mo- 
tion can be represented as that of some other permanent rotation for fixed d, -: 1 i- ill. 

The set of permanent rotations is continuous with respect to 1, and each permanent ro- 
tation in the fairly small neighborhood of the considered one is conditionally stable. It 

is then possible to make the statement about the absolute stability with respect to the 

variables a, p, P, and Pp , as was made in the observation in [12] about the character 

of stability established on the basis of the Routh’s theorem. 

When the indicated above conditions are satisfied, permanent rotations are also stable 

with respect to the variables p, (I, r, y, y’ and y”. 

The author thanks V. V. Rumiantsev for discussing this work and for his remarks. 
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